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Generalized Herglotz Functions and Inverse
Scattering Problem in a Finite Depth Ocean

R. P. Gilbert and Yongzhi Xu
Department of Mathematical Sciences,

Vniversity of Delaware,
Newark, DE 19716. '

1 Introduction

In an investigation of underwater acoustic wave inverse scattering problem,

namely to recover the shape of a scatterer from the far-field pattern of the

scattered wave, we have found tliat, besides the difficulty that the problem

is nonlinear and improperly posed, the most difficult point of the problem

comes from the fact that the scattered wave field and the far-field is not 1 � 1

related [6], [7],[12], In a finite depth ocean, only a finite number of modes

of the scattered wave propagate, the others decrease in an exponential

rate. A far-field pattern can carry only the information from the finite

propagating modes. Therefore, the same far-field pattern may correspond

to very difFerent near fields. In order to recover the shape of the scatterer,

which is certainly related to the near fiield, we need to discover the relation

between the near field and the far field under certain restrictions, In [12] we

have constructed a proper subset of the incoming waves u' x, z! so that the

mapping from the scattered fields to the far field patterns is an injection.

Based on this injective result, an algorithm similar to that developed by

Iiirsch and Kress [10] was presented in [12].

In this paper, we continue our investigation of the problem by using the

method of Colton and lvlonk, that is, we seek an optimal solution in the

'This research gas supported in part by Sea Grant NA86AA-D-SG040.





and the n,'" mode of u', u'� x!, satisfies the radiating condition

Ou�
lim r>  �" � ika�u'�! = 0, r =[ x ~, n = 0, 1, ..., oo,

Br
� 8!

The inverse problem we are going to consider is that given far field

patterns f x, z, k! for one or several incoming waves, to find the shape of

the scattering object O. First, we discuss some decomposition properties

of the far field pattern, then we present a numerical algorithm to recover

the shape of the scatterer. At the last, we apply our algorithm to some

numerical examples and recover the shape of some "footballs". For an

object with arbitrary shape, the computation becomes very time consuming

and more detailed investigation of the computational problem is necessary,

WVe are presently modifying our program to accomplish this and our results

will be presented in a subsequent paper.

!n this section we discuss the dense and decomposition properties of far field

patterns for the Helmholtz equation in a finite depth ocean. An alternate

version of these results here may be found in our earlier papers [7], [8].

Let u = u' + u' and u' is the incoming wave and u' the scattering

wave. AVe assume that k g �» + 1 !rr/2h for n = 0, 1, 2, .... For any given

incoming wave u', u is deterniined uniquely. [11] Let G -, C, ~x �  ]! be the

Green's function of Helmholtz equation in R~ satisfying boundary condition

{1.2! �.3! and radiating condition �.8!, ui � � {x =  xi, xq! g R; Ix[ = 1!.

If the incoming wave u' is

2 Generalized Herglotz functions and far field
patterns for the Helmholtz equation in a
finite depth ocean





    , W,   !!~
Bv 

s v'     o P!> n'     � x.z!
Bn Ovt

    P! .
Bv~

= F  � u,P; � x, z!.

As defined in [6], a generalized Herglotz wave function is such v  ,  !

that

lim � f ~u g,  !~'d$d    oo,
D~

where D, =   x, z! F Rs» ~x~ C r!. v  ,  ! may be expressed as

v  ,  ! = g x, z! Q P� z!P�  !e'"'"" ~da
Dg

 -~!

where g x, z! C I  BDi! is the generalized Herglotz kernel.

Define

X =  F x,z;a�,P!;n = 1,'2, ...;P C '[0, h]!,

S =  F x, z; ~�, P! � F x, -; oi, P!; n = 1,2,, P 6 [0, h!!

and

f [F x,; o�, 9! � F x, =; ai, P!]g x, z!der = 0,
9+

5 = veV, u,v!=0foruGS!,

where

V = I, [0, 2z] x:.pan/Pp, yi, ..., y~!

and  a ! has a limit point in [0,2r]. In the same way as in [8] Th.4.3, we

can prove:

Theorem> 2.2!f v defined by �.5! is not an eigenfunction of the Dirich-

let problem in 0, then the set F is dense in V

Now we consider the dense property of 8. If g 9 8, then



r = 1,2, ...; P e [o, hj.

By analytic continuation of F x, z; u, P! with respect to  o, P!, we get for

every o C ~> that

[F x,z;o,P!jg x,z!da = Pc�P� 9!, P E [O,hl, �.7!
BDg m=0

where c�are constants.

Suppose not all c�equal zero and let

U' x, z! = u' x, z; o�, P!g  � o, P!d~,
8Di

 z.s!

then the far field pattern of U' x, =! is

f F x, z; o�, P!y -n, P!da
8D>

F  � c �, P; � x, z!g  � o, P!da

&Di = P c�y� z!

U' x, z! = � �Q P� z!P  z !!H"' ka�r! + o~,
n=O

�.>o!

where o'p; contains no propagating modes. However, since g E S C V

so for jxj > R, U' x, z! can be expressed as

U' x, =! = u' x, z; a�, j9! g  � o, j4!do.
aD,

= P P� z!U�' x!.  ~.ii!

Hence. we must have

rp X
U' x,z! = � �P q� z!P, z !H '  ka�r!. r > R.

n=0

 v la!

without loss of generality, we assume that c�= P� zo! where �, zo! is in

the interior of B. It follows that for jxj ! R, where R is a constant such

that Dg ~ 0,



The importance of the above result is tliat even though for a given far

field pattern, we usually can not determine a unique near field, we can find

a function such as U' x,z! that is uniquely determined by the far field

pattern

f F x, z; a�, P!g  � o, P!do
8Di

From �.8!, U' x, z! is a solution to the Helmholtz equation in R> $ B.

The real analyticity of solutions to the Helmholtz equation follows that

U' x, z! can be continuated to BQ uniquely. A construction of U' x, z! for

r   R will be given in later section of this paper.

Now we are in the position to prove a theorem which was first presented

by Colton and hfonk for the Kz case.[4] P]

Theorem 2.3: Assume that k~ is not an eigenvalue of the interior

Dirichlet problem and let v be the solution of the Dirichlet problem

6v+k'v=0, in';  '-»!

�.14!v r,&,z! = U' x,z! on 80,

where U' x, z! is given by �,8! and  r,8, ! is the polar coordinates related

to  x, z!. Then

�! If v is an entire Herglotz wave function with Herglotz 1 ernel g g 0,

then ~~~ g �!;

�! If v is not an entire Herglotz wave function. S = �!.

Proof: If g C S~, then we have �.7!. i.e.

f [F x, z; a, P!]g x, z jda = P c�g� P!
8D~ n=O

�.1S!

for every  a, P! C ODi. If c�= 0 for n = 0, 1, ..., 1V, then g = 0 by Theorem

2.2. If some c�g 0, then the far field pattern of U' x, z! defined by �.8!

is not identical to zero and represented by �.15!.



Furthermore,

W

w »,z! = � / g  � n,P! Q P  z!$� P!e' ' " *'de,
aD v=0

e ~,P! E 0. ~�  P!e'"'"'"d .
ao,

{2. >6!= v x,z!,

which satisfies on OQ that

~ x,.! = � g -~, P! u' x,.; ~, P!d~.
aD'

g  � a, P!u' x, z; n, P!da
aD!

�.S7!= U x,=! ~

Hence,

{2.>8!v x,-! = U' x,~! on an.

It proves the theorem in a reciprocal way.

3 The inverse scattering problem

IV

Ui{M! = a= Pa. ~!~. =! le. e > [0 2<j Il~-II < M!

In this section we will like to reformulate the inverse scattering prob-

lem as a problem in constrained optimization based on the preceding anal-

ysis. A similar formulation has been carried out by Colton and Monk for

an object in R'. [4I [5]

We assume that 0 is such that OQ can be parameterized in the form

p = p 8, P! where 0 < a < p H, P! < b for 0 < 8 < 2r, 0 < P < x, and a, b

are some positive constants. Let   p, 8, P! be the spherical coordinates with

respect to  x. -!. We define the sets Ui and U2 by





Theorem 3.1: Let 4 F! be the set of admissible solutions correspond-

ing to the far field pattern F. If Fj � g F in V+, p,- g 4 Fz!, then there

exists a convergent subsequence of  pj ! and every limit point ilies in C  F!.

PrOOf: Since U2 iS COmpaCt, withOut lOSS Of generality we Can aSSume

that  pj! converges to p C U2. Let  g�, p�! be the pair such that  yj, pj! g

 g,p'! C U A7!. XVe need to show that

J L

Z F M dL! = Q Q I f F x, -;a Pi!g' x z!dv, � Q g  zp!d  P !I'
1 t m=O

x 2'

+ r  r  e 4!.~ =  ~.<!! � U' r' ~,4!~~,z  ~ 4!!l'~~A �.2!
0 0

where v is the generalized Herglotz wave function associated with g', r

p sing and z = p"cosP.  AVe will use similar notations for pj, r~, zj as well

as p, r, = without saying it every time. Now if p E 4 F! is with associated

pair  g, p!, then

J L !v

~ FM,d~!  EEIf + »,; i,pi!g' x,=!«.� Qd,  zz�. p.!l'
j=1 l=l n=0

+ f f lv  v' g, d!, g, z  g, d!! � V' ' gg!g=*, gd,!,!I 'dgd,d
J L fV

= iim KE I f Fi x,-;a~,P!g x,:!dv � 2 d  zo� � Pi!l
n=O

gz 21t+ lv~ zi g,g! g"-z g 4!l �  " zi g 4! g =~ g >!!I'dgd4!
0 0 = lim j F, U,J,I!

!~~

L

  iim Qglf F x z;v,,P,!g. x,:!d v Qd� z,!d� P,!lz
~=i t=l go= 0

g; 2gg
+ ~v r H, P!, 6, = e, y!! � U  g  e, y!, e, z e, y!! ~'dedy

0 0

= g F, AS, J,L!.

It finishes the proof.

10



Theorem 3.2: Assume that kz is not the eigenvalue of the interior

Dirichlet problem for 0 and 0 a bounded domain with C boundary BO:

p = p |!!, P! such that p 6 Uz. Assume the solution of �.3!,�.4! is an gener-

alized entire Herglotz wave function with Herglotz kernel g 6 lVz  [0, 2n] x

[0, h]!. If F is the far field pattern corresponding to B and the incident

wave

Then there exists a constant Mo    x! such that g F,M,J,L! = 0 for each

M ! Mo and integers J, L. For each J, L, let  p-' j, j = 1,2, -,nJ,L.

The number of these limit points is finite.

Proof: Since I . is not a eigenvalue for the interior Dirichlet problem,

the problem �.3!, �.4! has unique solution. Hence. g C Uq M! is uniquely

determined for M > Mp where Mo is a positive constant. From �.7! and

�.13! we see that J F, M, J, L! = 0 for each M > 1! fo and every integers

J and L.

Now let  p-' j be as defined in the theorem. Then since Uq is compact,J,L

the sequence  p,' j has a subsequence converging to p C Uz. Let g,' E

U~ M! be a function associated with p ', then  g ' j has a subsequenceJ,L J,L

converging to a limit point g' g U, M!. But it follows from the fact that

Z F,M, J,L! = 0 for M > MD and each J, L,

�.3!

for i = 1,2, ..., J; 1 = 1,2, ..., L. Hence,

f [F x, z; o;, P~!]g' x, z!da = P P� zs!P� P~!
E!Di a=0

for i = 1,2, ...; l = 1,2, .... In view of Theorem 2.2 we now can conclude

that g = g.

11



Now we prove that there is only finite number of limit points p lying

in Uq. Let  p,!, fg;j be the convergent subsequences defined above, then

since J F, M, J, L! = 0 for M > Mo, we have that

v p t' z! ~ z! = g�  ! g0  z�  . !e""'"'"' "d<4 = U' p ~ -!.
n=o

�.5!

and hence by passing to the limit

If there existed an infinite number of limit points p* in U2, then from the

compactness of U~ and the Arzela-Ascoli theorem we could find a domain

D' with arbitrary small area such that

vg p, 8, "!:= v p, 8, =! � U' p, 8, z!

is an eigenfunction of D with eigenvalue k~. But this is inipossible. Hence,

there is only finite number of limit points p".

4 A representation of U' r,z!

Since U' x,z! = U' r, z! for r > R, we are going to look for a

solution of

Du+ k u = 6  � zo!,  r,H,z! E Dp,
6 r!
2XT

� 1!

� P!u = U' r,=!, at r = R,

�.3!

�.4!< .=0, at -=0,

� =0,
00

az
�.5!at -=h.

12
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If u r, z! is a solution to �.1! � �.5!, then

U' r, !, T >R

u r,z! = U' r, !, for  x,z! C Bp5 0, �.6!

'We can solve problem �,1! � �.5! by a wwriant of Hankel transform.

Let

R
u s, z! = Jp sr!u r, !rdr, 0 < s   oo, 0 < z < h, �.7!

0

then

f Jp rs! u s, z!sds
0

R OO

u�, z![ Jp ts! Jp sr!sds ]fdic = u r, z!,
0 0

�.8!

Ocr R, O< z h.

From �.1!, we have

f RJp kar! ru !�d7 + u>> ka> z! + k u ka> z! = 6 z z'p!. �,9!
0

Since

f Jp kar! ru,!,dr
0

R
= Jp kar!ru,~p Jp kar !karu dr

0

Jp kaR!Ru, R, z! � Jp kaR! kaRu R, z!

+  kar Jp kar!! ud kar!
0

Jp kaR!Ru� R, z! � Jp kaR! kaRu B, z!
R

�  ka!~ Jp kar!urdr
0

satisfies �.1! in Kz $ B. Hence, the uniqueness to the Helmholtz equation

will follow that



= Jo kaR!Ru� R, z! � Jo kaR!kaRu R, z!

�  ka!'u ka, z!,

�.9! becomes

u«+ k � � a !u = f ka, =! � b z � zo!, �.10!

�. 11!u ka,0! = 0,

�.12!u, ka,Z! =0,

where

f ka, z! = Jo kaR!kaRu R, z! � Jp kaR!Ru, R, z!

2Rk P� zo!P� z! a Jo kaR!HO'  ka�R! � a�JD kaR! [Ho  ka�R!] !

let

g jn[k� � a ! z>]cp cI [k� � a !  z< � h!]
� � a'!'I cow [kh l � a !'~']

where z> � max/z, zo!, and z< � � min z, zo!. The solution to the problem

�.10! � �.12! is

h

u ka, z! = K ka, z, zo! + f ka, t!K ka, z, t!dt.
0

�.13!

Hence,

u r,z! = Jo kar!u ka,"!kad ka!,  T,z! ~ Dp,
0

�.14!

gives a solution to the problem �.1! � �.5!.

5 Numerical examples

14

In this section, we present simple examples to show numeri-

cal implementation of our algorithm. The data for the inverse problem

is the approximate far field pattern corresponding to a finite number of



equally spaced incoming plane waves. To provide this data, we have de-

veloped a "matching" scheme for the direct problem in a finite depth

ocean.[9] The basic idea there is that we use the ray representation to

approximate the near field and normal modes representation the far field.

First, we write the scattered near field as a finite sum of basic functions

h~ ~ kr!P~ ~ cosP!e', � n < m < n; n = 0, 1, ..., oo, where h~ ~ denote the

spherical Hankel function of first kind and P~ ~ t! are the associated Leg-

endre functions, We find the coefficients in this expression by matching the

sum with the incoming wave on the boundary of the scattering obstacle BH.

Then we express the propagating field in a normal modes representation

N~ Mi

u' r,8, z! = P g P �y� z!H '  ka�r!e'
~=o m= � h1q

and match it with the starting field on a, properly chosen cylinder. After

the coefficients P �are determined, the approximate propagating far field

pattern is

X hfdf

F 8, z! = Q Q P �  � i2h!e ' ~ P� z!e'
n=0 m=-hfdf

In this section, we present two simple examples that the boundary of

object can be represented as: p = p z, 8! ! 0, 0 < z < h, 0 < 8 < 2ir. For

this case, the function U' r, z! is simply that

rp W

U' r,z! = � g b~ zo�� z!HO  ka�r!, for r > p z,8! ! 0.
h n=0

Also we can match the propagating field with the incident field on the

boundary of scattering object directly,

For L incoming waves with direction

cas�~ l/L!
sin{2~i/L!



and Pj = jh/J, j = 1,2, ..., J, we denote the responding far field pattern

as

W Mi

F'~ H, !=Q Q F"�P   }e', /=1 2,...,L; j=1 2,...,J. �2!
~=O m= � M>

Also, we write the generalized Herglotz kernel g C V as

g"�,z! = Q Q g"� t� z!e' '.
~=0 m= � Mg

If the scatterer is represented by

p, 8, z! = g P q<gcosjHcos
 =0 j=0

tm.z s, l~z, lm z
+ g< cosj &sin + p> sinj icos + p<,-sinj Hsin � !, �.4!

then we can discrete the inverse optimization problem as:

L X M

J, F,M,J,L! = min gg h!r p g F'"�g �+ p q� zo�� j h/J!
j=l  =1 =0

T7lg TAg

+ ' Q Q I<  ~ ! +' p  ~p zg! e!l
1111 1712 � 1 =1

where

and p�= 27rp/ml, 8�= 2~p/m1, C�= vh/m2,.", � � qh/m2.

NOW we preSent twO eXalnples frOln Our COlnputatiOnS.

Example 1:

Exact figure: z, + s~ = 8.06 5sin�t'z/h! + 1,  see figure la!.

Parameters: k = 4, h = 5, 1V = 5;

Direct problem: M1 � � 3, ml � � 16, m2 � � 20;

Number of incoming waves: Figure 1b, J = 3, L = 8; Figure 1c, J =

6, L=8.



Inverse problem: Mi � � 3, mi = 16, mq � � 20, l> � � 2, ji � � 2.

Approximate figure: see figure 1b and 1c;

g F, M, J, L! = 2.3 x 10 4,

= O�0-'!

Example 2:

Exact figure: x> + xz �� 5z �0 � z! /16 + 9,  see figure 2a!.

Parameters: k = 2, h = 10, N = 5;

Direct problem: Mi � � 3, mi � � 16, m~ � � 24;

Number of incoming waves: J = S, L = 10;

Inverse problem: Mi � � 3, mi � � 16, mq � � 0, lq � � 3, jq � � 3.

Approximate figure: see figure 2b.

g F, M, J, L! = 1.3 x 10 s.

ll~. � s 11 = o lo-'!.

17
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